API Reference
TurbulentTransport
TJLF.InputTGLF
— TypeInputTGLF(dd::IMAS.dd, rho::AbstractVector{Float64}, sat::Symbol=:sat0, electromagnetic::Bool=false, lump_ions::Bool=true)
Evaluate TGLF input parameters at given radii
InputTGLF(dd::IMAS.dd, gridpoint_cp::AbstractVector{Int}, sat::Symbol=:sat0, electromagnetic::Bool=false, lump_ions::Bool=true)
Evaluate TGLF input parameters at given core profiles grid indexes
TurbulentTransport.compare_two_input_tglfs
— Functioncompare_two_input_tglfs(itp_1::InputTGLF, itp_2::InputTGLF)
Compares two input_tglfs, prints the difference and stores the difference in a new InputTGLF
TurbulentTransport.run_qlgyro
— Functioninput_qlgyro(input_qlgyro::InputQLGYRO, input_cgyro::InputCGYRO)
Run QLGYRO starting from a InputQLGYRO and InputCGYRO
Returns a FluxSolution
structure
run_qlgyro(input_qlgyros::Vector{InputQLGYRO}, input_cgyros::Vector{InputCGYRO})
Run QLGYRO starting from a vectors of InputQLGYRO and InputCGYRO
NOTE: Each run is done sequentially, one after the other
Returns a vector of FluxSolution
structures
TurbulentTransport.run_tglf
— Functionrun_tglf(input_tglf::InputTGLF)
Run TGLF starting from a InputTGLF.
Returns a FluxSolution
structure
run_tglf(input_tglf::InputTGLF)
Run TGLF starting from a vector of InputTGLFs.
NOTE: Each run is done asyncronously (ie. in separate parallel processes)
Returns a FluxSolution
structure
TurbulentTransport.run_tglfnn
— Functionrun_tglfnn(input_tglf::InputTGLF; model_filename::String, uncertain::Bool=false, warn_nn_train_bounds::Bool, fidelity::Symbol=:TGLFNN)
Run TGLFNN starting from a InputTGLF, using a specific model_filename
.
If the model is an ensemble of NNs, then the output can be uncertain (using the Measurements.jl package).
The warnnntrain_bounds checks against the standard deviation of the inputs to warn if evaluation is likely outside of training bounds.
Returns a flux_solution
structure
run_tglfnn(data::Dict; model_filename::String, uncertain::Bool=false, warn_nn_train_bounds::Bool, fidelity::Symbol=:TGLFNN)
Run TGLFNN from a dictionary, using a specific model_filename
.
If the model is an ensemble of NNs, then the output can be uncertain (using the Measurements.jl package).
The warnnntrain_bounds checks against the standard deviation of the inputs to warn if evaluation is likely outside of training bounds.
Returns a dictionary with fluxes